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Measuring the Causal Effect

Observational Dist. + Causal Graph ⇒ Interventional Dist.

P(q2, h1, r , h2, a, y) P(Y | do(a))
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From P(Y | do(a)) we can compute quantities of interest:

ATE: EP(Y | do(a))− EP(Y | do(a′)

1Illustration based on Rotnitzky 2021.
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From P(Y | do(a)) we can compute quantities of interest:

ATE: EP(Y | do(a))− EP(Y | do(a′)

Can the causal effect of a on y be identified from the observational dist. ?

Yes. P(y | do(a)) = ∑r P(y | a, r) · P(r)

In this example, {r} is an adjustment set for estimating the causal
effect of a on y . Since r is observed, then {r} is a valid adjustment
set, and hence the causal effect of a on y is identifiable.

1Illustration based on Rotnitzky 2021.



Adjustment Sets

Definition (Adjustment Sets)

Given a DAG G , and pairwise disjoint X ,Y ,Z ⊆ V (G ), Z is an
adjustment set for estimating the causal effect of X on Y if, for
every distribution P that factorizes according to G :

P(Y | do(X )) =

{
P(Y | X ) if Z = ∅

∑Z P(Y | X ,Z )P(Z ) otherwise

The choice of adjustment set Z affects:

1. Time to compute interventional dist. P(Y | do(X )) and the
derived quantities of interest. Takes time exponential in |Z |.

2. The variance σ2
Z (P) of the (asymptotically)

normally-distributed estimator ÊP(Y | do(X )) Smucler

et al. 2021, Smucler and Rotnitzky 2022, Runge 2021.



Natural Requirements from Adjustment Sets

Let G be a DAG with observable variables R ⊆ V (G ). We wish to
find adjustment sets Z ⊆ V (G ) that are:

1. Valid : Z ⊆ R.

2. Non-Redundant (Minimal) : there is no Z ′ ⊊ Z that is an
adjustment set for estimating the causal effect.

3. Small size (or weight); of size at most k.

4. Yields estimator with low variance σ2
Z (P):

ÊP(Y | do(X )) = ∑
Z

ÊP(Y | do(X ),Z ) · P(Z ).



Examples of Adjustment Sets
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Minimal adjustment sets for estimating the causal effect of a on y :
{t}, {r}, {h1, q2}, {h2, q1}, {h1, h2}, {q1, q2}.

▶ Adjustment set(s) that optimize for size: {t}, {r}.
▶ Adjustment set(s) that optimize for variance: {h1, h2} Smucler

et al. 2021.

2Illustration based on Rotnitzky 2021.
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Minimal adjustment sets for estimating the causal effect of a on y :
{t}, {r}, {h1, q2}, {h2, q1}, {h1, h2}, {q1, q2}.

▶ Adjustment set(s) that optimize for size: {t}, {r}.
▶ Adjustment set(s) that optimize for variance: {h1, h2} Smucler

et al. 2021.

Problem: Size and variance are at odds!

2Illustration based on Rotnitzky 2021.



Domination Among Adjustment Sets

▶ Let Z1,Z2 ⊆ V (G ) be two valid adjustment sets for
estimating the causal effect of X on Y in G .

▶ We write Z1 ≤σ
G Z2 if σ2

Z1
(P) ≤ σ2

Z2
(P) for every joint

probability dist. P that factorizes according to G .
▶ Induces a partial order. There may exist two adjustment sets

S1, S2 where σ2
S1
(P) < σ2

S2
(P) and σ2

S2
(P ′) < σ2

S1
(P ′) where

P,P ′ both factorize according to G .

▶ We say that Z1 dominates Z2 if:

Z1 ≤σ
G Z2 and |Z1| ≤ |Z2|

and one of these inequalities is proper.
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Pareto-Optimal Frontier of Adjustment Sets

Goal: Return all non-dominated adjustment sets.

Problems:

1. Too many.

2. Too big/expensive to be practical.

Refined Goal: Return all non-dominated adjustment sets
whose size (weight) is at most k .

Theorem

There is an algorithm that lists the Pareto-Optimal minimal
adjustment sets for computing an unbiased estimator of the
interventional mean of outcomes Y under interventions on X , of
size at most k, in total time O(4k · k · (n+m)).



Generating the Pareto-Optimal Frontier of Adjustment Sets

Fixed setting: DAG G ; obtain unbiased estimator of the
interventional mean of outcomes Y under interventions on X .

Ingredients:

1. Translate problem of finding adjustment sets in DAG G to
finding separators in an undirected graph H.
▶ Validity constraints - we want only adjustment sets Z ⊆ R.
▶ Inclusion constraints - we want only adjustment sets I ⊆ Z .

2. Translate critierion for (partially) ordering adjustment sets
based on the variance they yield (Z1 ≤σ

G Z2) to a graphical
criterion of separators.



Ingredient #1: From Adjustment Sets to Separators

▶ Let H be an undirected graph, and X ,Y ⊆ V (H).

▶ S ⊆ V (H) is an X ,Y -separator of H if in the graph H−S
there is no path from X to Y .

▶ S is a minimal X ,Y -separator if none of its proper subsets are.

▶ S is a minimum X ,Y -separator of H if |S | ≤ |S ′| for every
X ,Y -separator S ′.

S

Graph H, vertex sets X , Y ⊆ V (H).

We denote by SX ,Y (H) the minimal X ,Y -separators in H.



Ingredient #1: From Adjustment Sets to Separators

We denote by AX ,Y (I ,R,G ) all subsets I ⊆ Z ⊆ R that are

adjustment sets for computing an unbiased estimator of the
interventional mean of outcomes Y under interventions X . We
denote by AMIN

X ,Y (I ,R,G ) the minimal adjustment sets.

Theorem (based on van der Zander et al. 2019, Smucler et al. 2021)

There is an undirected graph H derived from G where :

1. AX ,Y (I ,R,G ) ̸= ∅ if and only if X and Y are non-adjacent
in H.

2. S ∈ AMIN
X ,Y (I ,R,G ) if and only if S ∈ SX ,Y (H).



Ingredient #2: Graphical Criterion for ≤σ
G

▶ Smucler et al. 2021 presented a graphical criterion for the
univariate case - single treatment variable X and single
outcome variable Y .

▶ We generalize to the case where X and Y are variable-sets,
and show an equivalent criteria.

▶ For an X ,Y -separator S in H, we denote by:

▶ CX (H−S)
def
= {v ∈ V (H) : v is reachable from X in H−S}.

▶ CY (H−S)
def
= {v ∈ V (H) : v is reachable from Y in H−S}.

Theorem

Let S1,S2 ∈ AMIN
X ,Y (I ,R,G ), then:

S1 ≤σ
G S2 if and only if CY (H−S1) ⊆ CY (H−S2).



Graphical Criteria for Domination of Adjustment Sets

Theorem

Let S1,S2 ∈ AMIN
X ,Y (I ,R,G ), then:

S1 ≤σ
G S2 if and only if CY (H−S1) ⊆ CY (H−S2).

▶ Causal model G ; R ⊆ V (G ) are observed; treatment variables
X and outcome variables Y .

▶ Let H be the undirected graph derived from G where
AMIN

X ,Y (I ,R,G ) = SX ,Y (H) van der Zander et al., Smucler

et al. 2019, 2021.

▶ Let Z ∈ SX ,Y (H).
▶ By applying the theorem, we have that Z ∈ AMIN

X ,Y (I ,R,G )
belongs to the Pareto frontier if and only if

CY (H− Z ′) ⊆ CY (H−Z ) =⇒ |Z | < |Z ′|.

for every Z ′ ∈ AX ,Y (I ,R,G ).



Pareto Frontier of Adjustment Sets ≡ Important Separators

Definition (Important Separator Marx 2011)

Let S ⊆ V (H). We say that S is an important X ,Y -separator if
S ∈ SX ,Y (H), and for any other S ′ ∈ SX ,Y (H) it holds that:

CY (H−S ′) ⊂ CY (H−S) =⇒ |S ′| > |S |

Ingredients 1 + 2

S ∈ AMIN
X ,Y (I ,R,G ) is Pareto optimal ⇔ S ∈ SX ,Y (H) and important.
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Pareto Frontier of Adjustment Sets ≡ Important Separators

S ∈ AMIN
X ,Y (I ,R,G ) is Pareto optimal ⇔ S ∈ SX ,Y (H) and important.

Theorem (Marx 2011)

There are at most 4k important X ,Y -separators of H whose size
is at most k, and they can all be generated in time
O(4k · k · (n+m)).

Theorem

The Pareto-Optimal minimal adjustment sets of size at most k ,
can be generated in total time O(4k · k · (n+m)).



Is This Enough ?

▶ This approach works only if k is small.

▶ Variable weights bounded by constant c .

▶ Not really ranked: if k = 10, then adjustment sets of size 10
may be returned before those of size 3.



Is This Enough ?

▶ This approach works only if k is small.

▶ Variable weights bounded by constant c .

▶ Not really ranked: if k = 10, then adjustment sets of size 10
may be returned before those of size 3.

Theorem

Let G be a causal DAG with weight function w : V (G ) → N≥1 ,

and X ,Y ⊆ V (G ) disjoint. There is an algorithm that enumerates

all valid adjustment sets for (X ,Y ) in order of non-decreasing

total weight, breaking ties by ≤σ
G (i.e., proximity to Y ). The delay

is O(Kn ·m1+o(1)), where K is the size of the largest set listed.



Conclusion & Outlook

▶ Our enumeration algorithms generate a comprehensive
(pareto-optimal) set of valid, cost-constrained adjustment
sets.

▶ These outputs have the potential to serve as training data
for ML models that predict high-quality adjustment sets.

▶ This approach enables data-driven discovery of patterns
connecting graphical structure to estimator variance.
▶ By analyzing these patterns, we may gain new insights into

how the position and composition of adjustment sets affect
estimator variance.



Thank you!
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